
Appears in the 9th IEEE International Symposium on High Performance Distributed Computing.

An Evaluation of Alternative Designs for a Grid Information Service

Warren Smith†, Abdul Waheed*, David Meyers‡, Jerry Yan
†Computer Sciences Corporation

*MRJ Technology Solutions
‡Directory Research L.L.C. 1

NASA Ames Research Center
Moffett Field, CA 94035-1000

{ wwsmith,waheed} @nas.nasa.gov { dmeyers,jyan} @arc.nasa.gov

Abstract

Computational grids consisting of large and diverse sets
of distributed resources have recently been adopted by
organizations such as NASA and the NSF. One key
component of a computational grid is an information
services that provides information about resources,
services, and applications to users and their tools. This
information is required to use a computational grid and
therefore should be available in a timely and reliable
manner. In this work, we describe the Globus information
service, describe how this service is used, analyze its
current performance, and perform trace-driven
simulations to evaluate alternative implementations of
this grid information service. We find that the majority of
the transactions with the information service are changes
to the data maintained by the service. We also find that of
the three servers we evaluate, one of the commercial
products provides the best performance for our workload
and that the response time of the information service was
not improved during the single experiment we performed
with data distributed across two servers.

1. Introduction

Computational grids [3] consisting of large and diverse
sets of distributed resources have recently been adopted
by organizations such as NASA in their Information
Power Grid (IPG) [7,9] and NSF in their Partnership for
Advanced Computing Infrastructure (PACI) effort
[11,12]. The key middleware supporting computational
grids is the Globus toolkit [4]. The Globus toolkit
provides services such as security, communication,
managing distributed applications, remote data transfer,

1 This work was partially funded by grant 08.008.005.002 from the

Research Institute for Advanced Computer Science at NASA Ames
Research Center.

and information. The increase in the number of resources
and users in Globus-based computational grids has
highlighted deficiencies in the current implementation of
some of these services. In particular, the implementation
of the Globus Grid Information Service (GIS) was
insufficient to handle the loads being placed on it until the
recent addition of a second server. The result of the high
load on the GIS was that queries made by users were not
being fulfilled in a timely manner and therefore, users
could not effectively locate and determine how to access
the resources available in the Globus-based computational
grids.

The goal of this study is to examine the demands made
on the Globus GIS and evaluate how well different GIS
implementations can meet those demands. We begin in
Section 2 by describing the current Globus GIS and how
it is used by Globus software and users. In Section 3, we
use trace data obtained from the Globus GIS to study the
load that is placed on the GIS and characterize who is
accessing the GIS for what reasons. We find that the
majority of the accesses made to the GIS are for the
purposes of modifying the information stored in the GIS.
This is contrary to the assumption made by most of the
commercial software used to implement grid information
services which assume that the vast majority of the
operations will be searches. This access pattern is also
similar to the access patterns expected for Directory
Enabled Networking [8] and our results should therefore
apply to that domain. We also find that fairly high
demands are placed on the GIS: there are typically 90
connections open to the GIS and 8.8 operations per
second occur on average.

Section 4 describes how we use trace-driven
simulation to evaluate GIS configurations and presents
the results of these simulations. We find that of the three
servers we evaluate, the server provided by Vendor 1
exhibits the best performance on the hardware we used
for evaluation. We also find that the communication

Appears in the 9th IEEE International Symposium on High Performance Distributed Computing.

latency between the clients and the servers has a
significant impact on performance and that distributing
the GIS data across two servers increases the average
update time by 27 percent and decreases the average
search time by 76 percent. Section 4 describes our
methodology for evaluating GIS implementations,
presents the results we have obtained, and analyzes these
results. Section 5 describes the changes to Globus in
version 1.1.3 that will affect the Globus GIS and
discusses the effects we believe they will have on GIS
performance and reliability. Section 6 presents our
conclusions and future work.

2. Metacomputing Directory Service

The Metacomputing Directory Service (MDS) [2] is
the grid information service of the Globus project. The
MDS is a repository of information for using
computational grids. It contains information about
organizations, people, computers, networks, software,
applications, and project-specific data. The MDS is
accessed using the Lightweight Directory Access Protocol
(LDAP) [5,6] and data in the MDS is organized as entries
in a hierarchical tree called the directory information tree.
The location of an entry in the directory information tree
is based on organizations and other entries it is associated
with. For example, a Portable Batch System scheduler
interface for a SGI Origin computer system at NASA
Ames would be located in the directory information tree
(moving towards the root of the tree) at:
service=jobmanager-pbs, hn=origin.arc.nasa.gov,
ou=Ames Research Center, o=National Aeronautical and
Space Administration, o=Globus, c=US. Each entry in the
tree is a set of attributes where an attribute has a name and
one or more values. The names are text strings and the
values can be of any number of pre-defined types, but are
typically strings. For example, the entry for the above
PBS scheduler interface might contain the name of the
host it is running on, the port it is listening on, the type of
scheduler available, how many nodes are managed and
available through the interface, properties of the
scheduler, and so forth. Details of the MDS directory
information tree and the types of entries that are defined
are available in [2].

The LDAP protocol supports addition, deletion, and
modification of entries in the directory information tree
and allows clients to search an LDAP server for entries
that satisfy specified search constraints. The LDAP
communications between the client and the server can be
unauthenticated, authenticated with an identity and
password, or authenticated with an identity and password
over a Secure Sockets Layer (SSL) connection. Currently,
the MDS is not using SSL connections. LDAP databases
and clients are provided by many vendors. In this work,
we are concerned with implementations provided by

OpenLDAP and two companies, Vendor 1 and Vendor 2,
that we cannot identify for licensing reasons. Currently,
the Globus software uses the OpenLDAP client software
to access the MDS, which is contained in two Netscape
LDAP servers located at the National Center for
Supercomputing Applications (NCSA) in Champaign-
Urbana, Illinois.

As the number of entities participating in the Globus
computational grid increased, the response time of a
single server became inadequate. Fortunately, LDAP
servers support several techniques to improve response
times. First, data can be distributed across several
computer systems. This is accomplished by placing sub-
trees of the directory information tree on different hosts
and accessing these sub-trees through LDAP referrals.
For example, all data from NASA Ames can reside in a
database on a LDAP server running on a machine at
NASA Ames. This approach may increase the amount of
adds, deletes, and modifies that can occur in a given time
interval but may increase the response time of searches if
the searches have to contact multiple servers to get their
results.

Second, Data can be replicated on multiple hosts. This
approach may increase the number of searches that can be
serviced in a given time by servicing the searches on
different hosts, but it may decrease the number of adds,
deletes, and modifies that can occur in a given time since
any changes made must be propagated to the replications.
Third, the LDAP servers can be tuned to improve their
response time. This tuning varies from implementation to
implementation, but one example is the creation of
indexes that allow for faster searches. As mentioned
above, the Globus MDS data has recently been distributed
across two servers at NCSA and this has significantly
improved the access times to the data contained in the
MDS.

There are several different Globus software modules
that update information in the MDS. First, when a
computer system is initially added to the Globus grid, a
setup script populates the MDS with information about
the host, it’s network interfaces, the networks it is
attached to, and the Globus software running on the host.
Second, there are a set of scripts that are run periodically
to update information about the computers, networks, and
software available through the grid. Third, there are MDS
updates associated with the Globus Resource Allocation
Manager (GRAM) [1]. The GRAM is used to start
applications on remote computer systems and there are
two GRAM components on remote computer systems that
interest us here. The GRAM job manager is a daemon that
is started for each application. The job manager starts,
monitors, and manages an application and informs a
second software module, the GRAM reporter, of the
application state. Periodically, the GRAM reporter will
determine the number of available nodes on the computer

Appears in the 9th IEEE International Symposium on High Performance Distributed Computing.

system it is associated with, determine the status of any
queues associated with the GRAM, determine the users
that can use the GRAM, gather the state of the
applications submitted through the GRAM, and update all
of this information in the MDS. By default, this process is
performed every 30 seconds and user and job information
is not published into the MDS. Many sites do not publish
the user information for security reasons, and do not
publish job information due to the load it places on the
MDS.

There are many possible ways that users can use the
MDS data. One common way is that when a user uses the
globusrun program to start an application on a host, the
user can specify the hostname, and globusrun will contact
the MDS to find the host name, port number, and other
information necessary for GRAM to start an application
on the remote computer. Another common use of the
MDS is to query the status of applications that are started
on remote systems. Users have not typically employed the
MDS in more sophisticated ways because the response
time of the MDS was not sufficient to support these
activities.

A new release of Globus, version 1.1.3, should occur
in June or July of 2000 and there are changes that affect
the MDS in this release. The most significant change is
that the MDS will be a highly distributed information
service with an OpenLDAP server running on every host
that provides compute cycles to remote users through
Globus. These LDAP servers will maintain local data and
can also be configured to push data to organizational
LDAP servers that maintain data from a group of hosts
that are running the Globus software. A further

description of this approach is provided in Section 5 along
with our thoughts on this approach.

3. Workload Characterization

In this section, we analyze 20 hours of trace data
recorded from the Globus MDS server. This data consists
of all of the accesses to the LDAP server from when the
server restarted on February 24, 2000 to when it restarted
again on February 25. These 20 hours of data contain
86,695 connections to the server and 143,446 adds,
deletes, modifies, and searches. If we also consider
connects, binds to an identity, responses to requests,
unbinds from an identity, and closes then there are
633,672 operations in the workload or an average of 8.8
operations per second.

Figure 1 graphs the number of open connections at any
given time. The data shows that there are typically 90
connections open at any time with two spikes of over 900
active connections. Figure 2 presents a histogram of
connection duration. This data shows that there are a large
number of relatively short-duration connections. In fact,
88 percent of the connections last less than 120 seconds
and 97 percent of the connections last less than 240
seconds. Examining the data closer, we determine that the
long-duration connections are those where a user connects
to the information service and periodically searches for
the state of their application using that connection. Figure
3 shows a histogram of the number of adds, deletes,
modifies, or searches per connection. The data shows that
the vast majority of the connections have relatively few
operations. In fact, 97 percent of the connections have
two or less of these operations. Examination of this data

0

100

200

300

400

500

600

700

800

900

1000

0 10000 20000 30000 40000 50000 60000 70000 80000

Time (seconds)

N
um

be
r

of
 O

pe
n

C
on

ne
ct

io
ns

Figure 1. The number of open connections to the MDS server over time.

Appears in the 9th IEEE International Symposium on High Performance Distributed Computing.

shows that the connections with the most number of
operations are those where a user is periodically searching
for the state of their application. There are also a fairly
high number of operations per connection when a gram
reporter updates information when publishing of job
information is enabled.

Each connection consists of a connect, a bind to an
identity, one or more adds, deletes, modifies, or searches,
an unbind, and a close. Table 1 shows the number of add,
delete, modify, and search operations in the trace data. As
one can see, the majority of the operations are modifies.
These modifications come from GRAM reporters to
update information such as job status, the load on
workstations, the nodes available through schedulers, and
so forth. Modifications are also used to touch objects so
that clients will know that Globus daemons were up in the
recent past. There are relatively few entries added and
deleted because only entries for jobs are added and
deleted and very few computer systems are publishing
this information due to the load it places on the MDS.
Entries can also be added to the MDS when new
organizations start using the MDS, but these events are
relatively rare and did not occur in the trace data analyzed
here. There are relatively few searches because at the time
this data was recorded, users were avoiding searches of
the MDS because these searches were not returning
results for long periods of time. Table 1 also presents the
number of errors that occur during the operations. The
data shows that a high percentage of the add and search
applications result in errors. Most of the errors that occur
during add operations occur when Globus software first
tries to modify an entry in the MDS, the modify fails, an
add is attempted, and it also fails. The modify typically
fails because the bind to an identity failed. These
successions of failures can be avoided by responding
correctly to the LDAP error codes that are generated: an
add should only be attempted after a failed modify if the
modify failed because the entry does not exist. The search
operations also result in a high percentage of errors.

Almost all of these errors are caused by the searches
timing out before they complete because the server was
too highly loaded.

We also use this trace data to classify the connections
and identify what type of entity initiated the connection
and for what purpose. These classifications are shown in
Table 2. As one can see, we can classify almost 100
percent of the connections and the majority of the
connections, 67 percent, are modifications of data made
by GRAM reporters.

4. Experimental Analysis

We use a set of experiments to evaluate the
performance of LDAP server implementations,
implementation-specific LDAP configurations, and
distribution of an LDAP directory information tree across
multiple hosts. Our approach in this work is to evaluate
GIS configurations by starting one or more LDAP servers
that will act as the GIS on one or more systems, loading
these servers with the contents of the Globus MDS as of
February 24, 2000, and then replaying 20 hours of access
that were made to the Globus MDS server between
February 24, 2000 and February 25, 2000 from one or
more workstations. The clients on the workstation that
exercise the LDAP servers are written in Java and use the
Java Naming and Directory Information Interface
(JNDI). The trace data used for these simulations is the
derived from the data that we analyzed in Section 3.

The data used in the simulation differs from the
recorded data in that the recorded data does not include
the actual modifications made to entries or the actual
contents of the entries that were added to the LDAP
servers. We construct this data off-line using the data in
the MDS and our knowledge of which attributes Globus
modifies. We perform different experiments and adjust
the load on the LDAP servers by simulating the trace data
faster or slower than real time. Our testing environment

0

10000

20000

30000

40000

50000

0 200 400 600 800 1000

Time (seconds)

N
um

be
r

of
 C

on
ne

ct
io

ns

Figure 2. Histogram of connection durations.

0

10000

20000

30000

40000

50000

60000

0 5 10 15 20 25 30

Operations per Connection

O
cc

ur
an

ce
s

Figure 3. Histogram of operations per connection.

Appears in the 9th IEEE International Symposium on High Performance Distributed Computing.

consists of a Sun UltraSparc 30 with one 296 MHz CPU,
512 MB of memory and UltraSCSI disk drives running
Solaris 2.6 where we run most of our experiments and a
Sun UltraSparc 10 with a 333 MHz CPU, 128 MB of
memory and a UltraSCSI disk drive that we use for
experiments when two servers are used to provide an
information service. We use several client systems in
different geographical locations to test OpenLDAP server
version 1.2.10 and the latest LDAP products from Vendor
1 and Vendor 2 running on one or both of these systems.
We evaluate a MDS configuration using the response
time of the LDAP commands and if the LDAP servers
continue to operate.

There are many possible GIS designs and we only aim
to evaluate a few in this work. First, we evaluate the
relative performance of the OpenLDAP, Vendor 1, and
Vendor 2 LDAP servers. Second, we evaluate the

performance effects of using indexes to improve search
performance. Third, we evaluate the performance of a
GIS that distributes data over two LDAP servers using
referrals. Fourth, we discuss the advantages and
disadvantages of data replication in our environment.

4.1. Comparison of LDAP Servers

To compare the performance of the LDAP servers
from OpenLDAP, Vendor 1, and Vendor 2, we start one
of these servers on our test system, load the LDAP server
with the MDS contents from February 24 as described
above, and then use a simulator running on a workstation
to exercise the LDAP server under test. The simulator
replays the trace data recorded from the MDS server in
real time or at a faster or slower rate. The simulator can

Table 1. Occurrences of LDAP operations.

Operation Number
of

Operations

Percent of
Total

Operations

Number of
LDAP Errors

Percent of
Operations Resulting

in Error
Add 1044 0.73 943 90.33

Delete 81 0.06 6 7.41
Modify 134611 93.84 3807 2.83
Search 7710 5.37 5867 76.10
Total 143446 100.00 10623 7.41

Table 2. Classification of MDS connections.

Number
of

connections

Percent
of

Connections

Description

58476 67.45 Modification to job manager, the queues it can submit to, and the jobs it has
submitted.

364 0.42 Modification of host information. This includes entries for the host, it’s views from
various networks, the Globus software running on the host.

73 0.08 Modification of network information.
7 0.01 Modification of software information.

71 0.08 Deletion of jobs.
191 0.22 Search for job status
50 0.06 Search for job managers.

1494 1.72 Search by the MDS monitor.
1234 1.42 Search for all GlobusPhysicalResource objects. We do not currently know what entity

is generating these searches.
22 0.03 Search for all objects. These are most likely users performing tests.
0 0.00 Unclassified adds.
5 0.01 Unclassified deletes. Deletions are so infrequent that we do not classify them.

4440 5.12 Connections with a bind and unbind but no operations. We do not currently have an
explanation for these connections.

20232 23.34 Connections containing a connect, a bind failure, an unbind, and a close.
86659 99.96 Classified connections.
86695 100.00 Total number of connections

Appears in the 9th IEEE International Symposium on High Performance Distributed Computing.

also be programmed with constraints such as the
maximum number of open connections at a time and the
maximum number of new connections that can be opened
a second. Table 3 summarizes the results of these
experiments. The load column indicates the load that was
placed on the server under test. For the Vendor 1 and
Vendor 2 results, the load is the factor by which the
simulator sped up time during the simulations. For the
OpenLDAP server we indicate a load of about 0.5 but this
does not directly relate to the amount of time it took to
complete the simulation. We found that the OpenLDAP
server failed when we attempted to perform simulations at
a load of 1.0 or 0.5. The server failed by not responding to
queries in the middle of the simulations. To complete a
simulation, we limited the maximum number of open
connections to 50 and the maximum number of new
connections a second to 20, roughly half the average of 90
open connections that occur during a real-time simulation.
These are the results reported for OpenLDAP in Table 3
and leads to our first result: the OpenLDAP server is the
only server of the three we tested to fail under the loads
we placed on it.

The data for the servers from Vendor 1 and Vendor 2
for a load of 1 indicate that the server from Vendor 1
performs adds, deletes, and modifies in 0.13 seconds on
average, 9 times faster than the 1.2 seconds of the server
from Vendor 2. The server from Vendor 2 performs
searches in 1.4 seconds on average, which is 1.8 times
faster than the 2.5 seconds of the Vendor 1 server. This
data seems to indicate that the Vendor 2 server has been
highly optimized for search performance. We note that
the server from Vendor 2 has more indexes to improve
search performance than the server from Vendor 1
(indexes and their performance effects are discussed
further in Section 4.2) and changes to the data require that
these indexes be updated. Optimizing search performance
is an excellent characteristic for the typical data in LDAP
servers that is not modified very often, but trading
improved search performance for decreased modification
performance is not the best choice in our environment.
This observation is further emphasized when the response
times for the simulations that execute in half of the time
they were recorded (load of 2) is examined. The data
shows that the response time from the server from Vendor

2 is 34.6 times slower than the server from Vendor 1. We
observe that during the experiment with the server from
Vendor 2, the CPU load on the host running the server
had a load of about 5.5 (as measured by the Unix uptime
command) while we observed a CPU load of at most 0.1
during the experiment with the server from Vendor 1.
This data may indicate that the Vendor 1 server is I/O
bound while the Vendor 2 server is CPU bound. Future
experiment to further examine these observations would
be to examine the performance of these servers on a
multiprocessor system and/or a system with an array of
disks.

4.2. Indexing

One technique that is used to improve the performance
of searches is indexing. An index essentially stores search
results for quick lookups when a search occurs. For
example, an index can be maintained for an operating
system attribute so that a search for all Solaris computer
systems is quickly responded to by accessing the index.
The index would be an equality index on the operating
system attribute that would contain a list of entries
associated with the value Solaris. These entries would be
all of the entries in the directory that have a value of
Solaris for the operating system attribute.

The disadvantage to indexes is that they have to be
updated whenever an attribute they are indexing is
changed. This adds overhead to the add, modify, and
delete operations to maintain any indexes that refer to any
of the attributes in the entries that are changed. We
evaluate the performance of indexes by adding an index
to the server from Vendor 1 to improve the performance
of the 191 searches made to determine the status of jobs
and then performing a real-time simulation. These
searches are performed over the whole directory tree to
look for entries with GlobalJobIDs that contain the name
of the system that the job is executing on. To improve the
performance of these searches, we add an approximate
index on the GlobalJobID attribute.

We find that the search performance improves 79
percent from 2463 ms to 515 ms while the performance of
the add, delete, and modify operations decreases 38
percent from 159 ms to 220 ms. We therefore see that

Table 3. Performance of operations on individual LDAP servers under varying loads.

Load LDAP Server Add
(ms)

Delete
(ms)

Modify
(ms)

Search
(ms)

Weighted Average
(ms)

~0.5 OpenLDAP 101 108 317 1657 387
Vendor 1 121 106 159 2463 283 1.0
Vendor 2 933 1230 903 1358 928

1.33 Vendor 1 194 141 233 2874 375
Vendor 1 270 351 581 4031 764 2.0
Vendor 2 31722 36920 26558 22945 26407

Appears in the 9th IEEE International Symposium on High Performance Distributed Computing.

there is a significant improvement in search performance
when an index is used, but there is a decrease in
performance for changes to entries. In our environment,
this decrease in performance for the large number of
modifications outweighs the increase in performance of
the search operations.

4.3. Data Distribution

Distribution of data can be used to support very large
databases and to improve the performance of databases.
Distributing data across multiple servers results in more
resources being available to handle data modifications
and hopefully better performance. Data distribution can
also improve search performance when the searches
access data from only a few servers. In this situation,
more resources are available to satisfy searches. If
searches access data from many servers, many
transactions have to occur to obtain the search results and
this reduces search performance.

We are interested in distributing data across multiple
servers because of the large percentage of operations in
our environment that change the data. Globus users
observed a dramatic performance improvement when the
Globus GIS recently moved from a single server to two
servers. We wish to perform simulations to characterize
the effects of distributing data across more than one
server. We distribute our data across two servers from
Vendor 1 in the same way that the Globus GIS currently
distributes it’s data: one server contains all of the data
from NASA and the NSF Alliance sites, the second server
contains all of the other data.

We performed a simulation in half of the time the data
was recorded in. We assume that the components
updating data in the information service will know which
of the servers contains the data they are updating so that
only one server will be contacted for each update. We
find that distributing our data across two servers results in
an increased update time of 27 percent. This surprising
result may be due to a load imbalance on the two servers
or due to the differing performance of the two computer
systems the LDAP servers ran on. We are continuing to
investigate this result. We also find that the average
search time is 970 ms which is 76 percent faster than the
4031 ms search time when a single LDAP server is used.

Another way to use multiple computer systems to store
our data is to replicate data on one or more servers.
Replication improves search performance by having more
resources available to perform searches and improves
reliability by having data still be available when a server
goes down. The disadvantage to replication is that when
data is changed, these changes must be propagated to the
replicas of the data and this adds overhead. At this time,
we do not evaluate replication because of the relatively

few number of searches in our workload and the relatively
large number of modifications.

5. Globus 1.1.3 Grid Information Service

The Globus group has made several changes in Globus
version 1.1.3 to attempt to improve the performance of
their information service. The major change is that the
default information service is highly distributed to lower
the number of changes made to the data on any single
server and eliminate the bottleneck caused by having
many data updates go to only a few servers. By default,
each host that supports application execution via Globus
has a Grid Resource Information Server (GRIS) on it. The
GRIS consists of the OpenLDAP front end layered over
the GRAM reporter (described in Section 2) that provides
information about the host the GRIS is running on
including the host itself, the software on the host, the
users who can access to the host, and the applications
running.

The other new component of the Globus 1.1.3 GIS is
organizational LDAP servers. An organizational sever is a
LDAP server (Globus will configure an OpenLDAP
organizational server if it is asked to) that contains
referrals to the GRIS servers it is associated with. For
example, an organizational server would contain an entry
for each of the GRIS servers in that organization and each
of these entries would refer to a GRIS server on a
machine in the organization. This configuration results in
a “pull” model for retrieving data: when a user performs a
search, an organizational server queries the GRIS servers
that may contain the data the user is interested in and then
passes this data to the user. This is very different from the
“push” model used by earlier Globus releases where the
GRAM reporter pushed data to remote LDAP servers.

We have not evaluated these changes to the Globus
information service using experiments but we do have
some initial thoughts. First, having a large number of
LDAP servers will mean fewer accesses to each server
and therefore faster response times. The difficulty is that
the data of interest to users is now widely distributed. If a
user is interested in information from a small set of hosts,
we do not believe it will add a large overhead to perform
a small number of queries to different servers to find the
information. If a user is interested in information that
comes from a large number of hosts, we believe it will
take an unacceptably long time to query all of the hosts
that have the information. This is where organizational
servers that aggregate grid information can improve
search performance. Searches that examine data from a
large number of hosts can query a smaller number of
organizational servers to find their results in an acceptable
period of time if the organizational servers cache the data
they pull from GRIS servers. The next problem is that if
users perform searches for dynamic information from

Appears in the 9th IEEE International Symposium on High Performance Distributed Computing.

many hosts, this data cached in the organizational servers
will not be up to date and must be pulled from the GRIS
servers. This means that a search for dynamic information
sent to an organizational server can require many pulls of
data from GRIS servers and the potential benefits of
having a LDAP server on each Globus host have been
negated. If this situation occurs in practice, it implies that
there is no reason to have an LDAP server on each
Globus host.

To summarize our analysis, the effectiveness of the
changes to the Globus information service in version
1.1.3 will depend on how users want to access data from
this service. If users do not perform many searches for
dynamic data that are produced by a significant number of
hosts, then this approach should provide good
performance. If users do wish to search for dynamic data
produced by a significant number of hosts, the
OpenLDAP servers on the Globus hosts will not improve
performance and a set of organization servers that
maintain up-to-date information should be used.

6. Conclusions

In this paper, we described our investigation of
alternative designs for a grid information service. We
described the Globus grid information service and how
the Globus toolkit and users access this information
service. We analyzed trace data obtained from the Globus
information service and found that the majority of the
operations are modifications of existing data, that the
information service has roughly 90 connections open at
any given time, and the information service is performing
8.8 operations per second. We described our methodology
for experimentally evaluating LDAP server designs using
trace data and contents obtained from the Globus grid
information service and we evaluated the OpenLDAP
server and two servers from vendors we cannot specify.
We found that the OpenLDAP server failed when we
attempted to place our recorded load upon it and that the
server from Vendor 1 has 9 times lower response times
than the server from Vendor 2 when modifying data in the
directory service but the server from Vendor 2 has 1.8
times better search performance. If we double the load on
these servers, the server from Vendor 1 has 35 times
lower response times than the server from Vendor 2. We
also observe that the Vendor 2 implementation seems to
be highly optimized for searching and for executing on
multiprocessor computer systems. We find that indexing
can be used to reduce the response time of searches but
adding index also results in slower response times when
changes are made to the data because the indexes have to
be kept up to date. Finally, we distributed our directory
information tree across two servers on two computer
systems and performed a simulation with twice the load
of our trace data. We found that distributing data

increases the response time of updates by 27 percent but
decreases the response time for searches by 76 percent.

In future work, we will continue to evaluate different
configurations for grid information services and we will
investigate other factors that impact the performance of a
grid information service such as an increase in the number
of users and the use of secure connections the servers. To
assist in this work, we plan to develop a system of
synthetic grid entities to apply loads to proposed grid
information service. The current Globus components use
the grid information service in a relatively predictable
way. This makes it relatively easy to develop synthetic
components and have these components apply loads to
the grid information service. Further, as described in our
workload analysis, users also use the MDS in predictable
ways. This allows us to develop synthetic users and
evaluate the performance and fault tolerance of the design
of a grid information system if there are hundreds or
thousands of users. We expect the number of users of
computational grids to greatly increase as the middleware
grows in stability and more users observe the advantages
of using computational grids.

References
[1] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S.

Martin, W. Smith, S. Tuecke. A Resource Management
Architecture for Metasystems. Lecture Notes on Computer
Science, 1998.

[2] S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski,
W. Smith, S. Tuecke. A Directory Service for Configuring
High-Performance Distributed Computations. In
Proceedings of the 6th IEEE Symposium on High-
Performance Distributed Computing, pp. 365-375, 1997.

[3] I. Foster and C. Kesselman, editors. The Grid: Blueprint for
a New Computing Infrastructure. Morgan Kauffman, 1999.

[4] I. Foster and C. Kesselman. Globus: A Metacomputing
Infrastructure Toolkit. International Journal of
Supercomputing Applications. 11(2):115-128, 1997.

[5] T. Howes, M. Smith, G. Good. Understanding and
Deploying LDAP Directory Services. Macmillan Technical
Publishing, 1999.

[6] T. Howes and M. Smith. LDAP: Programming Directory-
Enabled Applications with Lightweight Directory Access
Protocol. Macmillan Technical Publishing, 1997.

[7] W. Johnston, D. Gannon, B. Nitzberg. Grids as Production
Computing Environments: The Engineering Aspects of
NASA’s Information Power Grid. In Proceedings of the
Eighth IEEE International Symposium on High
Performance Distributed Computing, 1999.

[8] J. Strassner and F. Baker. Directory Enabled
Networks. Macmillan Technical Publishing, 1999.

[9] The Information Power Grid. http://ipg.nasa.gov.
[10] The Globus Project. http://www.globus.org.
[11] The National Computational Science Alliance.

http://www.ncsa.uiuc.edu/alliance.
[12] The National Partnership for Advanced Computing

Infrastructure. http://www.npaci.edu.

